Assessment of Aero-Thermal Design Methodology for Effusion Cooled Lean Burn Annular Combustors

Author:

Andreini A.1,Facchini B.1,Mazzei L.1,Bellocci L.2,Turrini F.2

Affiliation:

1. University of Florence, Florence, Italy

2. Avio Aero, Rivalta di Torino, TO, Italy

Abstract

Increasingly stringent limitations imposed on aircraft engine emissions have led many manufacturers toward lean combustion technology, which involves a relevant increase in mass flow rate dedicated to primary combustion, leading as a consequence to a reduction of air dedicated to cooling of liners. One of the most promising cooling techniques in such conditions is represented by effusion cooling, which consists of an array of closely spaced discrete film cooling holes. This cooling method is based on a protective layer of cooling flow on the hot side of the liner, enhancing at the same time the heat removal within the holes. In the latest years many aero engine manufacturers have increased the research and technology investment on this combustion technology. Working in partnership with the University of Florence, specific component design tools and experimental techniques have been improved by Avio Aero for combustor gas turbine investigation. From a design perspective, CFD analysis has become a key tool up to the early stages of novel combustor design process, producing affordable direct 3D optimization of combustor aerodynamics. Nevertheless, a RANS simulation of even only a single sector of an annular combustor still presents a challenge when the cooling system is taken into account. This issue becomes more critical in case of modern effusion cooled combustors, which may contain up to two thousand holes for the single sector. For this reason, many efforts have been devoted to develop methodologies based on film cooling modeling. Among the approaches published in the literature, models based on local sources represent a good compromise between simplicity and accuracy, with the capability to automatically perform a Conjugate Heat Transfer analysis. This type of methodology has been already defined and validated by the authors, with comparison on effusion cooled plates in terms of experimental overall effectiveness measurements as well as the application on a tubular combustor test case. In the context of this work, the proposed approach has been applied to the analysis of a lean annular combustor with the purpose of investigating pressure losses, flow split and metal temperature field. The results obtained have been compared to experimental data and different numerical tools exploited during the preliminary design of these devices.

Publisher

American Society of Mechanical Engineers

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3