Validation Results for a Diverse Set of Turbomachinery Cases Using a Density Based OpenFOAM® Solver

Author:

Anderson Mark R.1,Bonhaus Daryl L.2

Affiliation:

1. IntegralX Inc., Norwich, VT

2. Concepts NREC, White River Junction, VT

Abstract

A validation study of a variety of compressible flow turbomachinery cases is presented with comparisons to test data using OpenFOAM. OpenFOAM is open-source code consisting of various solvers and computational libraries focused on CFD. The study used a particular solver version with a density based approach that was derived from the “extended” branch of OpenFOAM. The example cases all consisted of single blade row designs at steady state and were run fully viscous (unless noted otherwise) with various turbulence models. The results showed a definite superiority of the density based solver over other OpenFOAM solvers in a test suite of simplified cases as well as in more complex examples in actual turbomachinery designs. A typical Laval nozzle case and transonic bump case are presented demonstrating the basic ability of the solver to capture shocks and to handle transonic flow in general. Actual turbomachinery applications consisted of a two-dimensional transonic compressor cascade, a moderately supersonic two-dimensional turbine cascade, two radial compressor cases, and a radial inflow turbine. The results showed the solver to be very capable of capturing pressure distributions and, most importantly, aerodynamic loss through the machines. The ability of the solver to accurately model performance in a wide range of different designs and across the entire performance map was demonstrated. Detailed comparisons to highly regarded test data are shown. Special examination was made of the computational costs of the solver which were quite high with run times coming in at about 10 times longer than other commercial compressible flow solvers. Several acceleration methods are discussed which significantly improved run time performance.

Publisher

American Society of Mechanical Engineers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3