Experimental Investigations of SYCEE Film Cooling Performance on a Plate and a Tested Vane of an F-Class Gas Turbine

Author:

Han Chang1,Ren Jing1,Jiang Hongde1

Affiliation:

1. Tsinghua University, Beijing, China

Abstract

Film cooling is widely used in modern gas turbines for the protection of the hot components against hot gases from the combustion process. Film cooling directly influences the thermal efficiency of the gas turbine, as the cooling gas is extracted from the compressor and mixed with the mainstream in the hot component. Huge efforts by industry as well as research organizations have been undertaken to improve the film cooling effectiveness. It can been concluded that there are two key points for the improvement of film cooling effectiveness, constraining the blow-off of cooling ejection and extending the lateral coverage of cooling gas. The paper presents a new cooling technology, which reaches high film-cooling effectiveness as a result of a well-designed cooling hole, named SYCEE film cooling technology (SFCT). Plate film cooling experiments of SYCEE tested by pressure sensitive paint (PSP) are carried out in this work, and traditional shape-hole are included as well for baselines. It is resulted that SFCT has a better film cooling performance than shape-hole in the same conditions, and the gap of the averaged film cooling effectiveness between them continuously enlarges as the blowing ratio increases. Furthermore, an application of SFCT on the first stage vane of an F-class gas turbine is studied as well. A two-dimension cascade has been employed to measure the cooling performance of SFCT using pressure sensitive paint (PSP) as well, and the tested vanes separately with round-hole and shape-hole are considered again for baselines. The different kinds of film holes separately locate on the pressure and suction side, while the showerhead in different cases are kept the same, arranged with round-holes. The cooling air is ejected at inclination angle 45° with compound-angle 90° in the showerhead and inclination angle 35°∼45° without compound-angle on the pressure side and suction side. The detailed local cooling effectiveness distributions as well as the span-averaged effectiveness over the vane surface are presented. As expected, the film cooling performance of round-hole is the worst due to the lift-off of the cooling ejection. SFCT has better film cooling performance than shape-hole on the pressure side, but the advantage decreases along the mainstream direction. However, the span-averaged film cooling effectiveness of SYCEE is similar with that of the shape-hole on the suction side. This may be due to enhanced impact of mainstream flow derived from the pressure gradient in the turbine passage, and consequently weakening the effect of film hole on the suction side.

Publisher

American Society of Mechanical Engineers

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3