Affiliation:
1. Tsinghua University, Beijing, China
Abstract
Film cooling is widely used in modern gas turbines for the protection of the hot components against hot gases from the combustion process. Film cooling directly influences the thermal efficiency of the gas turbine, as the cooling gas is extracted from the compressor and mixed with the mainstream in the hot component. Huge efforts by industry as well as research organizations have been undertaken to improve the film cooling effectiveness. It can been concluded that there are two key points for the improvement of film cooling effectiveness, constraining the blow-off of cooling ejection and extending the lateral coverage of cooling gas. The paper presents a new cooling technology, which reaches high film-cooling effectiveness as a result of a well-designed cooling hole, named SYCEE film cooling technology (SFCT). Plate film cooling experiments of SYCEE tested by pressure sensitive paint (PSP) are carried out in this work, and traditional shape-hole are included as well for baselines. It is resulted that SFCT has a better film cooling performance than shape-hole in the same conditions, and the gap of the averaged film cooling effectiveness between them continuously enlarges as the blowing ratio increases.
Furthermore, an application of SFCT on the first stage vane of an F-class gas turbine is studied as well. A two-dimension cascade has been employed to measure the cooling performance of SFCT using pressure sensitive paint (PSP) as well, and the tested vanes separately with round-hole and shape-hole are considered again for baselines. The different kinds of film holes separately locate on the pressure and suction side, while the showerhead in different cases are kept the same, arranged with round-holes. The cooling air is ejected at inclination angle 45° with compound-angle 90° in the showerhead and inclination angle 35°∼45° without compound-angle on the pressure side and suction side. The detailed local cooling effectiveness distributions as well as the span-averaged effectiveness over the vane surface are presented. As expected, the film cooling performance of round-hole is the worst due to the lift-off of the cooling ejection. SFCT has better film cooling performance than shape-hole on the pressure side, but the advantage decreases along the mainstream direction. However, the span-averaged film cooling effectiveness of SYCEE is similar with that of the shape-hole on the suction side. This may be due to enhanced impact of mainstream flow derived from the pressure gradient in the turbine passage, and consequently weakening the effect of film hole on the suction side.
Publisher
American Society of Mechanical Engineers
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献