Tip Gap Variation on a Transonic Rotor in the Presence of Tip Blowing

Author:

Guinet Cyril1,Streit J. Anton1,Kau Hans-Peter1,Gümmer Volker2

Affiliation:

1. Technische Universität München, Garching, Germany

2. Rolls-Royce Deutschland, Blankenfelde-Mahlow, Germany

Abstract

High stability and efficiency are the main two objectives in the design of an axial-flow compressor. Stability usually reduces at higher stage loading, and the stability margin critically drops in transient operation and through the life cycle of an engine. A major reason for this to happen is the growing tip gap. A recirculating tip blowing casing treatment has shown the ability to enhance stability. To be able to use it as a stability control system at varying tip clearances in aircraft engines, the behavior of this casing treatment at different tip clearances was considered important and investigated in this paper. The present study investigates in depth the ability of a tip blowing casing treatment to postpone stall at three different tip clearances. The results prove a substantial beneficial effect for design and increased tip gaps and show some negative impact of the casing treatment for a small tip gap. The study is carried out on a 1.5 stage research compressor. The investigated rotor was already investigated with an axial-slot casing treatment for different tip gap heights at the Institute for Flight Propulsion. The design of a recirculating tip blowing casing treatment is simulated with an equivalent numerical setup. A tip blowing casing treatment consists of a bleed port connected to a tip blowing upstream of the rotor. The streamwise pressure gradient drives the tip blowing with a high injection velocity. A design speed line is simulated for three tip clearance values with and without the tip blowing casing treatment. The impact of the interaction between the tip blowing and the tip gap vortex is analyzed. A detailed analysis of the passage flow is conducted. A comparison of the stall margin is made. The study is carried out using URANS simulations.

Publisher

American Society of Mechanical Engineers

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3