An Experimental Study of the Aerodynamic Forcing Function in a 1.5 Steam Turbine Stage

Author:

Gatti Giacomo1,Gaetani Paolo2,Paradiso Berardo2,Dossena Vincenzo2,Bellucci Juri3,Arcangeli Lorenzo4,Maceli Nicola4

Affiliation:

1. Laboratorio di Fluidodinamica delle Macchine, Energy Department—Politecnico di Milano, Via Lambruschini 4, Milan 20156, Italy e-mail:

2. Laboratorio di Fluidodinamica delle Macchine, Energy Department—Politecnico di Milano, Via Lambruschini 4, Milan 20156, Italy

3. Department of Industrial Engineering, University of Florence, Via S. Marta 3, Florence 50139, Italy

4. GE Oil&Gas, Via F. Matteucci 2, Florence 50127, Italy

Abstract

The usual ways to measure the aerodynamic forcing function are complex and expensive. The aim of this work is to evaluate the forces acting on the blades using a relatively simpler experimental methodology based on a time-resolved pressure measurement at the rotor discharge. Upstream of the rotor, a steady three holes probe (3HP) has been used. The postprocessing procedures are described in detail, including the application of a phase-locked average and of an extension algorithm with phase-lag. The algorithm for the computation of the force components is presented, along with the underlying assumptions. In order to interpret the results, a preliminary description of the flowfield, both upstream and downstream of the rotor, is provided. This gives an insight of the most relevant features that affect the computation of the forces. Finally, the analysis of the results is presented. These are first described and then compared with overall section-average results (torque-sensor), and with the results from 3D unsteady simulations (integral of pressure over the blade surface) in order to assess the accuracy of the method. Both the experimental and the numerical results are also compared for two different operating conditions with increasing stage load.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3