Design and Control of a Pneumatic Artificial Muscle Actuated Above-Knee Prosthesis

Author:

Waycaster Garrett1,Wu Sai-Kit1,Shen Xiangrong1

Affiliation:

1. Department of Mechanical Engineering, The University of Alabama, 290 Hardaway Hall, Box 870276, Tuscaloosa, AL 35487-0276

Abstract

This paper presents the authors’ investigation results of applying the pneumatic artificial muscle actuation to above-knee prostheses. As a well-known muscle actuator, the pneumatic artificial muscle actuator features a number of unique advantages, including high power density, and similar elastic characteristics to biological muscles. Despite multiple applications in related areas, the application of pneumatic artificial muscle in above-knee prostheses has not been explored. Inspired by this fact, the research presented in this paper aims to develop a pneumatic artificial muscle-actuated above-knee prosthesis, with three specific objectives: (1) demonstrate the pneumatic artificial muscle actuation’s capability in generating sufficient torque output to meet the locomotive requirements; (2) develop an effective control approach to enable the restoration of locomotive functions; (3) conduct preliminary testing of the prosthesis prototype on a healthy subject through a specially designed able-body adaptor. In the prosthesis design, an agonist–antagonist layout is utilized to obtain a bidirectional motion. To minimize the radial profile, an open-frame structure is used, with the purpose of allowing the expansion of the muscle actuators into the center space without interference. Also, the muscle actuator parameters are calculated to provide sufficient torque capacity (up to 140 N m) to meet the requirements of level walking. According to this design, the fabricated prototype weighs approximately 3 kg, with a range of motion of approximately 100°. For the control of the prosthesis, a model-based torque control algorithm is developed based on the sliding mode control approach, which provides robust torque control for this highly nonlinear system. Combining this torque control algorithm with an impedance-based torque command generator (higher-level control algorithm), the fabricated prosthesis prototype has demonstrated a capability of providing a natural gait during treadmill walking experiments.

Publisher

ASME International

Subject

Biomedical Engineering,Medicine (miscellaneous)

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3