System Analysis of Thermochemical-Based Biorefineries for Coproduction of Hydrogen and Electricity

Author:

Braun Robert J.1,Hanzon Luke G.1,Dean Jered H.1

Affiliation:

1. Department of Engineering, Colorado School of Mines, Golden, CO 80401

Abstract

Fuels derived from biomass feedstocks are a particularly attractive energy resource pathway given their inherent advantages of energy security via domestic fuel crop production and their renewable status. However, there are numerous questions regarding how to optimally produce, distribute, and utilize biofuels such that they are economically, energetically, and environmentally sustainable. Comparative analyses of two conceptual 2000 tons/day thermochemical-based biorefineries are performed to explore the effects of emerging technologies on process efficiencies. System models of the biorefineries, created using ASPEN Plus®, include all primary process steps required to convert a biomass feedstock into hydrogen, including gasification, gas cleanup and conditioning, hydrogen purification, and thermal integration. The biorefinery concepts studied herein are representative of “near-term” (approximately 2015) and “future” (approximately 2025) plants. The near-term plant design serves as a baseline concept and incorporates currently available commercial technologies for all nongasifier processes. Gasifier technology employed in these analyses is centered on directly heated, oxygen-blown, fluidized-bed systems that are pressurized to nearly 25 bars. The future plant design employs emerging gas cleaning and conditioning technologies for both tar and sulfur removal unit operations. A 25% increase in electric power production is observed for the future case over the baseline configuration due to the improved thermal integration while realizing an overall plant efficiency improvement of 2 percentage points. Exergy analysis reveals that the largest inefficiencies are associated with the (i) gasification, (ii) steam and power production, and (iii) gas cleanup and purification processes. Additional suggestions for improvements in the biorefinery plant for hydrogen production are given.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Decarbonizing the Fertilizers Sector: An Alternative Pathway for Urea and Nitric Acid Production;Journal of Energy Resources Technology;2024-02-02

2. Modeling and Operational Optimization Based on Energy Hubs for Complex Energy Networks With Distributed Energy Resources;Journal of Energy Resources Technology;2018-09-26

3. Energy and Cost Analysis of a New Packed Bed Pumped Thermal Electricity Storage Unit;Journal of Energy Resources Technology;2017-10-31

4. Hydrogen;Efficiency of Biomass Energy;2016-09-13

5. Magnesium Hydride Slurry: A Better Answer to Hydrogen Storage;Journal of Energy Resources Technology;2015-05-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3