Beyond Mean–Variance: The Mean–Gini Approach to Optimization Under Uncertainty

Author:

Wang Mengyu1,Kannan Hanumanthrao2,Bloebaum Christina3

Affiliation:

1. Department of Aerospace Engineering, Iowa State University, Ames, IA 50011-2271 e-mail:

2. Department of Aerospace Engineering, Iowa State University, 1620F Howe Hall, Ames, IA 50011-2271 e-mail:

3. Mem. ASME Department of Aerospace Engineering, Iowa State University, 1620F Howe Hall, Ames, IA 50011-2271 e-mail:

Abstract

In probabilistic approaches to engineering design, including robust design, mean and variance are commonly used as the optimization objectives. This method, however, has significant limitations. For one, some mean–variance Pareto efficient designs may be stochastically dominated and should not be considered. Stochastic dominance is a mathematically rigorous concept commonly used in risk and decision analysis, based on the cumulative distribution function (CDFs), which establishes that one uncertain prospect is superior to another, while requiring minimal assumptions about the utility function of the outcome. This property makes it applicable to a wide range of engineering problems that ordinarily do not utilize techniques from normative decision analysis. In this work, we present a method to perform optimizations consistent with stochastic dominance: the Mean–Gini method. In macroeconomics, the Gini Index is the de facto metric for economic inequality, but statisticians have also proven a variant of it can be used to establish two conditions that are necessary and sufficient for both first and second-order stochastic dominance . These conditions can be used to reduce the Pareto frontier, eliminating stochastically dominated options. Remarkably, one of the conditions combines both mean and Gini, allowing for both expected outcome and uncertainty to be expressed in a single objective which, when maximized, produces a result that is not stochastically dominated given the Pareto front meets a convexity condition. We also find that, in a multi-objective optimization, the Mean–Gini optimization converges slightly faster than the mean–variance optimization.

Funder

National Science Foundation

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3