Surface Textured Drill Tools—An Effective Approach for Minimizing Chip Evacuation Force and Burr Formation During High Aspect Ratio Machining of Titanium Alloy

Author:

Niketh S.1,Samuel G. L.1

Affiliation:

1. Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India

Abstract

Abstract The real challenge pertaining to high aspect ratio drilling is the rapid increase in chip evacuation force due to the chip clogging phenomenon occurring at higher drilling depths. The clogged chips will further impede the reachability of cutting fluid at the machining zone leading to the tool temperature buildup. This will eventually result in the catastrophic failure of the tool. Hence, in the present work, an attempt has been made to minimize the chip evacuation force by functionalizing the drill tool surfaces based on the laser microtexturing principle. Microscale textures in the form of circular dimples were created on the flute and margin side of the drill tool with an objective to control the sliding friction, thereby minimizing the chip clogging effect. The effectiveness of the functionalized drill tools were assessed mainly based on the variation in thrust force and torque. Drilling experiments showed a net reduction of 17.18% in thrust force and 26.98% in torque while machining Ti–6Al–4V using the flute and margin textured tool, which justified the effectiveness of micro scale textures in minimizing the chip evacuation forces. The experimental analysis was further extended in terms of burr height evaluation, where FMT tools were found to be highly effective in burr height reduction (1.29 mm), showing a net reduction of 54.26% when compared with the non-textured tool. The outcomes from this research work will be highly beneficial for the manufacturing industries including aerospace, automobile, and spacecraft as high aspect ratio drilling of titanium alloys are still categorized to be the most challenging machining process owing to its lower thermal conductive property.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Reference63 articles.

1. Deep Hole Drilling;Biermann;CIRP Ann.,2018

2. An Overview of the Machinability of Aeroengine Alloys;Ezugwu;J. Mater. Process. Technol.,2003

3. Methodology to Determine Friction in Orthogonal Cutting With Application to Machining Titanium and Nickel Based Alloys;Ulutan,2012

4. In Situ Chip Formation Analyses in Micro Single-Lip and Twist Deep Hole Drilling;Kirschner;Int. J. Adv. Manuf. Technol.,2018

5. Spiral Point Drill Temperature and Stress in High-Throughput Drilling of Titanium;Li;Int. J. Mach. Tools Manuf.,2007

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3