Affiliation:
1. Fellow ASME
2. Department of Engineering Science and Mechanics, M/C 0219 Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
Abstract
We postulate that an equivalent continuum structure (ECS) of a single-walled carbon nanotube (SWCNT) is a hollow cylinder with mean radius and length equal to that of the SWCNT, and find the thickness of the ECS so that its mechanical response in free vibrations is the same as that of the SWCNT. That is, for mechanical deformations, the ECS is energetically equivalent to the SWCNT. We use MM3 potential to study axial, torsional, radial breathing and bending vibrations of several traction free–traction free SWCNTs of different helicities and diameters and compare them with the corresponding vibrational modes and frequencies of traction free–traction free ECSs obtained by using the three-dimensional linear elasticity theory and the finite element analysis (3D-FEA). The consideration of free ends eliminates the effects of boundary conditions and avoids resolving equivalence between boundary conditions in the analyses of SWCNTs and their ECSs. It is found that the wall thickness of the ECS (and hence of a SWCNT) is ∼1 Å and Young’s modulus of the material of the ECS (and hence of the SWCNT) is ∼3.3 TPa. Both quantities are independent of the helicity and the diameter of the SWCNT. We also study radial breathing mode (RBM) vibrations with the molecular dynamics and the 3D-FEA simulations, and compare them with experimental findings. Accuracy in the assignment of spectral lines for RBMs in the Raman spectroscopy is discussed.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
92 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献