Dynamics of Mechanical Systems and the Generalized Free-Body Diagram—Part I: General Formulation

Author:

Kövecses József1

Affiliation:

1. Department of Mechanical Engineering and Centre for Intelligent Machines, McGill University, 817 Sherbrooke St. West, Montréal, Québec, H3A 2K6, Canada

Abstract

In this paper, we generalize the idea of the free-body diagram for analytical mechanics for representations of mechanical systems in configuration space. The configuration space is characterized locally by an Euclidean tangent space. A key element in this work relies on the relaxation of constraint conditions. A new set of steps is proposed to treat constrained systems. According to this, the analysis should be broken down to two levels: (1) the specification of a transformation via the relaxation of the constraints; this defines a subspace, the space of constrained motion; and (2) specification of conditions on the motion in the space of constrained motion. The formulation and analysis associated with the first step can be seen as the generalization of the idea of the free-body diagram. This formulation is worked out in detail in this paper. The complement of the space of constrained motion is the space of admissible motion. The parametrization of this second subspace is generally the task of the analyst. If the two subspaces are orthogonal then useful decoupling can be achieved in the dynamics formulation. Conditions are developed for this orthogonality. Based on this, the dynamic equations are developed for constrained and admissible motions. These are the dynamic equilibrium equations associated with the generalized free-body diagram. They are valid for a broad range of constrained systems, which can include, for example, bilaterally constrained systems, redundantly constrained systems, unilaterally constrained systems, and nonideal constraint realization.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3