Large Eddy Simulation of the Laminar Heat Transfer Augmentation on the Pressure Side of a Turbine Vane Under Freestream Turbulence

Author:

Kanani Yousef1,Acharya Sumanta1,Ames Forrest2

Affiliation:

1. Materials and Aerospace Engineering Department, Illinois Institute of Technology Mechanical, Chicago, IL 60616 e-mail:

2. Mechanical Engineering Department, University of North Dakota, Grand Forks, ND 58202 e-mail:

Abstract

Vane pressure side heat transfer is studied numerically using large eddy simulation (LES) on an aft-loaded vane with a large leading edge over a range of turbulence conditions. Numerical simulations are performed in a linear cascade at exit chord Reynolds number of Re = 5.1 × 105 at low (Tu ≈ 0.7%), moderate (Tu ≈ 7.9%), and high (Tu ≈ 12.4%) freestream turbulence with varying length scales as prescribed by the experimental measurements of Varty and Ames (2016, “Experimental Heat Transfer Distributions Over an Aft Loaded Vane With a Large Leading Edge at Very High Turbulence Levels,” ASME Paper No. IMECE2016-67029). Heat transfer predictions on the vane pressure side are in a very good agreement with the experimental measurements and the heat transfer augmentation due to the freestream turbulence is well captured. At Tu ≈ 12.4%, freestream turbulence enhances the Stanton number on the pressure surface without boundary layer transition to turbulence by a maximum of about 50% relative to the low freestream turbulence case. Higher freestream turbulence generates elongated structures and high-velocity streaks wrapped around the leading edge that contain significant energy. Amplification of the velocity streaks is observed further downstream with max rms of 0.3 near the trailing edge but no transition to turbulence or formation of turbulence spots is observed on the pressure side. The heat transfer augmentation at the higher freestream turbulence is primarily due to the initial amplification of the low-frequency velocity perturbations inside the boundary layer that persist along the entire chord of the airfoil. Stanton numbers appear to scale with the streamwise velocity fluctuations inside the boundary layer.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3