Softening Instability: Part II—Localization Into Ellipsoidal Regions

Author:

Bazˇant Zdeneˇk P.1

Affiliation:

1. Department of Civil Engineering, Northwestern University, Evanston, IL 60208

Abstract

Extending the preceding study of exact solutions for finite-size strain-softening regions in layers and infinite space, exact solution of localization instability is obtained for the localization of strain into an ellipsoidal region in an infinite solid. The solution exploits Eshelby’s theorem for eigenstrains in elliptical inclusions in an infinite elastic solid. The special cases of localization of strain into a spherical region in three dimensions and into a circular region in two dimensions are further solved for finite solids — spheres in 3D and circles in 2D. The solutions show that even if the body is infinite the localization into finite regions of such shapes cannot take place at the start of strain-softening (a state corresponding to the peak of the stress-strain diagram) but at a finite strain-softening slope. If the size of the body relative to the size of the softening region is decreased and the boundary is restrained, homogeneous strain-softening remains stable into a larger strain. The results also can be used as checks for finite element programs for strain-softening. The present solutions determine only stability of equilibration states but not bifurcations of the equilibrium path.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3