Pressure Wave Transmission in a Fluid Contained in a Plastically Deforming Pipe

Author:

Fox G. L.1,Stepnewski D. D.2

Affiliation:

1. Westinghouse Hanford Co., Richland, Wash.

2. Reactor Safety Section, Westinghouse Hanford Co., Richland, Wash.

Abstract

The transmission of high pressure pulses through piping loops such as reactor cooling systems is usually studied with water hammer analysis techniques. Conventional wave analysis includes only elastic pipe wall deformation. However, plastic deformation of the pipe wall is effective in reducing the magnitude of transmitted pressure waves if the pressure is of sufficient magnitude to cause plastic yielding. This effect can be treated using a one-dimensional dynamic analysis by noting the similarity between the equations describing pressure wave induced plastic deformation in a solid bar and wave transmission causing plastic strain in a fluid filled pipe. The results of the analysis show that at fluid pressures less than the pipe yield pressure, waves are transmitted at elastic wave velocity; however, at pressures which exceed the pipe yield point, wave velocities are substantially reduced and the waves are dispersed. These results demonstrate that plastic deformation from transient pressure loading is limited to a relatively short length of piping near the source of the pressure pulse. The significance of this behavior with respect to reactor cooling systems is that pressures above those causing yield are not transmitted to primary loop components such as pumps and heat exchangers. The theoretical results are compared with experimental tests and show reasonable agreement.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3