Film Cooling With a Thermal Barrier Coating: Round Holes, Craters, and Trenches

Author:

Davidson F. Todd1,KistenMacher David A.1,Bogard David G.2

Affiliation:

1. e-mail:

2. e-mail:  The University of Texas at Austin, Austin, Texas 78712

Abstract

Little work has been done to understand the interconnected nature of film cooling and thermal barrier coatings (TBCs) on protecting high temperature turbine components. With increasing demands for improved engine performance it is vital that a greater understanding of the thermal behavior of turbine components is achieved. The purpose of this study was to investigate how various film cooling geometries affect the cooling performance of a thermally conducting turbine vane with a TBC. The vane model used in this study was designed to match the thermal behavior of real engine components by properly scaling the convective heat transfer coefficients along with the thermal conductivity of the vane wall. This allowed for the measurement of temperatures at the interface of the TBC and vane wall which, when nondimensionalized, are representative of the temperatures present for actual engine vanes. This study found that the addition of a TBC on the surface of an internally cooled vane produced a near constant cooling performance despite significant changes in the blowing ratio. The craters, trench, and modified trench of this study were found to provide much better film cooling coverage than round holes; however, the improved film cooling coverage led to only slight improvements in temperature at the interface of the TBC and vane wall. These results suggest that there is minimal advantage in using more complicated cooling configurations, particularly since they may be more susceptible to TBC spallation. However, the improved film coverage from the trench and crater designs may increase the life of the TBC, which would be greatly beneficial to the long-term thermal protection of the vane.

Publisher

ASME International

Subject

Mechanical Engineering

Reference25 articles.

1. Gas Turbine Film Cooling;J. Propul. Power,2006

2. Overall and Adiabatic Effectiveness Values on a Scaled Up, Simulated Gas Turbine Vane,2013

3. Measurements of Adiabatic Film and Overall Cooling Effectiveness on a Turbine Vane Pressure Side With a Trench,2013

4. Experimental Simulation of a Film Cooled Turbine Blade Leading Edge Including Thermal Barrier Coating Effects;ASME J. Turbomach.,2010

5. An Experimental Study of Thermal Barrier Coatings and Film Cooling on an Internally Cooled Simulated Turbine Vane,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3