Stress, Strain, and Mechanotransduction in Cells

Author:

Humphrey J. D.1

Affiliation:

1. Biomedical Engineering Program, Texas A&M University, College Station, TX 77843-3120

Abstract

It is widely accepted that numerous cell types respond to mechanical stimuli, yet there is no general agreement as to whether particular cells respond directly to stress, strain, strain-rate, strain-energy, or other mechanical quantities. By recalling the definitions of the mathematical (not physical) concepts of stress and strain, it is suggested herein that cells cannot respond directly to these continuum metrics or to quantities derived from them — mechanistic models will need to be based on more fundamental quantities, as, for example, inter-atomic forces or conformational changes of the appropriate molecules. Nonetheless, the concepts of stress and strain should continue to play an important role in mechanobiology, both in the identification of empirical correlations and in the development of phenomenological constitutive models, each of which can contribute to our basic understanding as well as help in the design of future experiments and some clinical interventions. It is important to remember, therefore, that empirical correlations and most constitutive relations in continuum mechanics do not seek to model the actual physics — rather, their utility is in their predictive capability, which is often achieved via different relations in terms of different metrics for the same material under different conditions. Hence, with regard to quantifying cellular responses to mechanical stimuli, we must delineate between the identification of fundamental mechanisms and the formulation of phenomenological correlations, the latter of which only requires convenient metrics that need not be unique or physical.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 115 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3