Functional Impact Comparison of Common and Innovative Products

Author:

Gilchrist Brady1,Van Bossuyt Douglas L.1,Tumer Irem Y.1,Arlitt Ryan1,Stone Robert B.1,Haapala Karl R.1

Affiliation:

1. Oregon State University, Corvallis, OR

Abstract

Innovation has been touted as a means toward providing sustainability. Innovations in materials, manufacturing, and product design can lead to a reduction of global environmental impacts while helping to realize the goals of a sustainable society. This research aims to explore whether or not product functionality has an effect on environmental impact and if the flow of energy, materials, and signals (EMS) have an effect on product environmental impact. Innovative and common products are identified and life cycle assessment is performed for each product at the component level. Using function impact matrices, the environmental impacts of the product components are propagated back to the functional level, where their impacts are compared. The innovative products of the comparisons conducted appear to be more environmentally impact; more work must be done to understand whether the result is generalizable. The intended use of this research is during the conceptual design phase when little is known about the final form of a product. With approximate impacts of functions known, designers can better utilize their design efforts to reduce overall product environmental impact.

Publisher

American Society of Mechanical Engineers

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Synergizing Product Design Information and Unit Manufacturing Process Analysis to Support Sustainable Engineering Education;Journal of Manufacturing Science and Engineering;2018-12-24

2. The Function-Based Design for Sustainability Method;Journal of Mechanical Design;2017-02-20

3. A benchmark-based method for sustainable product design;Benchmarking: An International Journal;2015-05-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3