Interacting With a Large Virtual Environment by Combining a Ground-Based Haptic Device and a Mobile Robot Base

Author:

Pavlik Ryan A.1,Vance Judy M.1,Luecke Greg R.1

Affiliation:

1. Iowa State University, Ames, IA

Abstract

Ground-based haptic devices provide the capability of adding force feedback to virtual environments; however, the physical workspace of such devices is very limited due to the fixed base. By mounting a haptic device on a mobile robot, rather than a fixed stand, the reachable volume can be extended to function in full-scale virtual environments. This work presents the hardware, software, and integration developed to use such a mobile base with a Haption Virtuose™ 6D35-45. A mobile robot with a Mecanum-style omni-directional drive base and an Arduino-compatible microcontroller development board communicates with software on a host computer to provide a VRPN-based control and data acquisition interface. The position of the mobile robot in the physical space is tracked using an optical tracking system. The SPARTA virtual assembly software was extended to 1) apply transformations to the haptic device data based on the tracked base position, and 2) capture the error between the haptic device’s end effector and the center of its workspace and command the robot over VRPN to minimize this error. The completed system allows use of the haptic device in a wide area projection screen or head-mounted display virtual environment, providing smooth free-space motion and stiff display of forces to the user throughout the entire space. The availability of haptics in large immersive environments can contribute to future advances in virtual assembly planning, factory simulation, and other operations where haptics is an essential part of the simulation experience.

Publisher

American Society of Mechanical Engineers

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3