Simultaneous Fog Formation and Thermophoretic Droplet Deposition in a Turbulent Pipe Flow

Author:

Epstein M.1,Hauser G. M.1

Affiliation:

1. Fauske & Associates, Inc., Burr Ridge, IL 60521

Abstract

Simultaneous aerosol formation by equilibrium condensation and the migration of the resulting droplets to the cold surface by thermophoresis is studied theoretically for a turbulent pipe flow. The problem is one in which a mixture of a vapor and noncondensable gas flows into a section of pipe where the pipe wall is cooled far below the dew point of the vapor. Because the temperature gradient at the pipe wall decays to zero once the gas travels far enough into the pipe, only some fraction of the droplets formed will deposit on the pipe wall. The equations of energy and diffusion suggest that turbulence leads to a discontinuity in the aerosol (fog) concentration at the boundary between the fog and clear regions. Numerical solutions are obtained for CsOH fog formation and deposition in steam flow—a particular case of current practical interest in water reactor safety. The axial and radial variations of the aerosol and vapor concentrations are displayed graphically, as are the location of the fog boundary as a function of axial distance and the efficiency of deposition as a function of the pipe wall temperature.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancement of convective-diffusion limited vaporization rates of fission products by metal fog formation;Annals of Nuclear Energy;2020-11

2. References;Two-Phase Flow, Boiling, and Condensation;2017-01-11

3. Unit Conversions;Two-Phase Flow, Boiling, and Condensation;2017-01-11

4. Physical Constants;Two-Phase Flow, Boiling, and Condensation;2017-01-11

5. Collision Integrals for the Lennard-Jones (6-12) Potential Model;Two-Phase Flow, Boiling, and Condensation;2017-01-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3