Affiliation:
1. Harbin Institute of Technology, People’s Republic of China
2. Laboratoire de Thermique, ENSMA (URA CNRS 1403), Poitiers Ce´dex, France
Abstract
A numerical analysis based on the finite difference scheme and Hottel’s zonal method generalized by the ray tracing method is carried out to treat the one-dimensional transient and steady-state combined radiative-conductive heat transfer in non-gray Semi-Transparent Materials (STM), especially glasses, subjected to an external pulse or a step of irradiation. Coupling problems are studied for two optical boundary conditions: opaque and vitreous interfaces with specular reflections. The influence of slab thickness, spectral properties of the STM, wavelength of the incident radiation, and diffusivity coefficient are examined. It is pointed out that the application of the laser flash method in thermal metrology may give irrelevant results if the basic heat transfer model is not able to take into account radiative-conductive coupling phenomena. The effect of semi-transparency on the steady-state temperature distribution is also examined for materials ranging from fully opaque to fully transparent.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
45 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献