Affiliation:
1. University of Southern California, Los Angeles, CA
Abstract
Conventional methods for fabricating ultrasound imaging transducer arrays, especially for high frequency range (>20 MHz), are expensive, time consuming and limited to relatively simple geometries. In this paper, the development of an additive manufacturing (AM) process based on digital micromirror devices (DMDs) is presented for the fabrication of piezoelectric devices such as ultrasound transducer arrays. Both green-part fabrication and the sintering of fabricated green-parts have been studied. A novel two-channel design in the bottom-up projection system is presented to address the piezo-composite fabrication challenges including a small curing depth and viscous ceramic slurry recoating. A prototype system has been developed for the fabrication of green-parts with complex shapes and small features. Based on the fabricated green-parts, the challenges in the sintering process for achieving desired functionality are discussed. Various approaches for increasing the density of sintered components are presented. Dielectric and piezoelectric properties of the fabricated samples are measured and compared with those of bulk PZT samples. Based on the identified challenges in the DMD-based AM process, future work for achieving fully functional piezoelectric ceramic components is discussed.
Publisher
American Society of Mechanical Engineers
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献