Affiliation:
1. Fellow ASME Mechanical Engineering, University of Kentucky, Lexington, KY 40506 e-mail:
Abstract
A neo-Hookean half-space, in equilibrium under uniform Cauchy stress, undergoes contact by a sliding rigid ellipsoid or a rolling rigid sphere. Sliding is resisted by friction, and sliding or rolling speed is subcritical. It is assumed that a dynamic steady state is achieved and that deformation induced by contact is infinitesimal. Transform methods, modified by introduction of quasi-polar coordinates, are used to obtain classical singular integral equations for this deformation. Assumptions of specific contact zone shape are not required. Signorini conditions and the requirement that resultant compressive load is stationary with respect to contact zone stress give an equation for any contact zone span in terms of a reference value and an algebraic formula for the latter. Calculations show that prestress can significantly alter the ratio of spans parallel and normal to the direction of die travel, an effect enhanced by increasing die speed.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献