Differential Equation Specification of Integral Turbulence Length Scales

Author:

Jefferson-Loveday Richard J.1,Tucker Paul G.2,Northall John D.3,Nagabhushana Rao V.2

Affiliation:

1. e-mail:

2. Whittle Laboratory, Department of Engineering, University of Cambridge, Cambridge, CB3 ODY, UK

3. Rolls-Royce, PLC, Derby, DE24 8BJ, UK

Abstract

A Hamilton–Jacobi differential equation is used to naturally and smoothly (via Dirichlet boundary conditions) set turbulence length scales in separated flow regions based on traditional expected length scales. Such zones occur for example in rim-seals. The approach is investigated using two test cases, flow over a cylinder at a Reynolds number of 140,000 and flow over a rectangular cavity at a Reynolds number of 50,000. The Nee–Kovasznay turbulence model is investigated using this approach. Predicted drag coefficients for the cylinder test-case show significant (15%) improvement over standard steady RANS and are comparable with URANS results. The mean flow-field also shows a significant improvement over URANS. The error in re-attachment length is improved by 180% compared with the steady RANS k-ω model. The wake velocity profile at a location downstream shows improvement and the URANS profile is inaccurate in comparison. For the cavity case, the HJ–NK approach is generally comparable with the other RANS models for measured velocity profiles. Predicted drag coefficients are compared with large eddy simulation. The new approach shows a 20–30% improvement in predicted drag coefficients compared with standard one and two equation RANS models. The shape of the recirculation region within the cavity is also much improved.

Publisher

ASME International

Subject

Mechanical Engineering

Reference28 articles.

1. Thin Layer Approximation and Algebraic Model for Separated Turbulent Flows,1978

2. A One-Equation Turbulence Transport Model for High Reynolds Number Wall-Bounded Flows,1990

3. A One-Equation Turbulence Model for Aerodynamic Flows,1992

4. Generalization of vt-92 Turbulence Model for Shear-Free and Stagnation Point Flows;ASME J. Fluids Eng.,2001

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3