Experiments on Cake Development in Crossflow Filtration for High Level Waste

Author:

Duignan Mark R.1,Nash Charles A.1

Affiliation:

1. Savannah River Nuclear Solutions, Savannah River National Laboratory, Aiken, SC 29802

Abstract

Crossflow filtration is a key process step in many operating and planned waste treatment facilities to separate undissolved solids from supernatant slurries. This separation technology generally has the advantage of self-cleaning through the action of wall shear stress created by the flow of waste slurry through the filter tubes. However, the ability of filter wall self-cleaning depends on the slurry being filtered. Many of the alkaline radioactive wastes are extremely challenging to filtration, e.g., those containing compounds of aluminum and iron having particles whose particle size and morphology reduce cake permeability. Low filter flux can be a bottleneck in waste processing facilities such as the Salt Waste Processing Facility at the Savannah River Site and the Waste Treatment Plant at the Hanford Site. To date, increased rates are generally realized by either increasing the crossflow filter axial flow rate, limited by pump capacity, or by increasing filter surface area limited by space and increasing the required pump load. The Savannah River National Laboratory (SRNL) set up both dead-end and crossflow filter tests to better understand filter performance based on filter media structure, flow conditions, and filter cleaning. Using nonradioactive simulated wastes, both chemically and physically similar to the actual radioactive wastes, the authors performed several tests to demonstrate increases in filter performance. With the proper use of filter flow conditions, filter flow rates can be increased over rates currently realized today. This paper describes the selection of a challenging simulated waste and crossflow filter tests to demonstrate how performance can be improved by varied filter operation methods. Those methods were a slow startup to better develop the filter cake and scouring the filter wall. The results showed that for salt waste and metal oxide hydroxide sludges, the process of backpulsing is not necessary to maintain a good filter flux, and the process of periodically scouring the filter improves filter performance. The results also imply that initial filter operation is important to develop a filter cake that minimized pressure drop, the presence of a filter cake can lead to improved solids separation, and a well-developed cake with periodic scouring may allow a good filter flux to be maintained for long periods of time.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3