Hydrogel-Forming Microneedle Arrays for Sustained and Controlled Ocular Drug Delivery

Author:

Amer Maher1,Chen Roland K.1

Affiliation:

1. School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164

Abstract

Abstract Microneedles (MNs) provide a minimally invasive alternative to intravitreal injections and a promising means to sustainable ocular drug delivery. To optimize the sustained drug release profile and to ease the administration of the MN array to the eye, the number of MNs in an MN array and their layout need to be carefully selected. In this study, the drug release kinetics of MN arrays with varying numbers of MNs (8, 12, and 16) is studied over a four-week period. The MN arrays show a much more uniform drug release profile than the single injections. Only the 16-needle MN array fully released all the amount of loaded drug at the end of the 4-week period. Both 8- and 12-needle arrays showed a steady release rate over the 4-week period, which is the longest sustained release duration that has been reported. Zero-order models are created to predict drug release profiles for the three MN arrays. It is estimated that the MN array with 8 needles can deliver the drug for up to 6 weeks. The models can be used to design MN arrays with a given targeted therapeutic index for sustained drug delivery.

Funder

Congressionally Directed Medical Research Programs

Publisher

ASME International

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference33 articles.

1. Age-Related Eye Diseases: An Emerging Challenge for Public Health Professionals;Prev. Chronic. Dis.,2005

2. Antioxidant Vitamin and Mineral Supplements for Slowing the Progression of Age-Related Macular Degeneration;Cochrane Database Syst. Rev.,2017

3. Age-Related Macular Degeneration;N. Engl. J. Med.,2008

4. Age-Related Macular Degeneration;Lancet,2018

5. A Review of Anterior Segment Dysgeneses;Surv. Ophthalmol.,2006

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3