Computational Cost Reduction of MIMO Controllers for Active Magnetic Bearing Systems

Author:

Sahinkaya Alican1,Hawkins Larry2,Sawicki Jerzy T.1

Affiliation:

1. Center for Rotating Machinery Dynamics and Control (RoMaDyC), Cleveland State University, Cleveland, OH 44115

2. Calnetix Technologies, Cerritos, CA 90703

Abstract

Abstract Generalized multiple-input-multiple-output (MIMO) controllers such as H∞ and μ have not been widely adopted in the magnetic bearing industry, partially due to high computational cost relative to simpler single-input-single-output schemes. Computational cost is important to industrial magnetic bearing vendors as their controller hardware is based on embedded processors that have limited bandwidth. Studies to mitigate the problem of high-order controllers show the limit of the existing methods in order reduction while still maintaining satisfying robust performance. A novel method is proposed to reduce the computational cost of robust controllers by identifying bounds in their dynamic response, such that an implementation of a controller within those bounds results in the robust performance. The bounds are used to develop two computational cost reduction schemes for controller implementation, i.e., (1) identifying a dual-rate implementation of a single-rate controller which uniformly reduces the computational cost via interlacing technique, and (2) redesign of a controller by identifying its negligible dynamics based on the identified bounds in the controllers' dynamic response. The results of both approaches are demonstrated on two active magnetic bearing (AMB) systems, a model of a 300 kW turbine generator with permanent magnet biased AMBs, and an experimental high-speed AMB machining spindle. μ-synthesis controllers are designed for both systems, and the proposed method and schemes are applied accordingly. The comparison of standard implementations of the synthesized controllers and the proposed new implementations is presented. The results demonstrate considerable reduction in the computational cost in terms of required number of multiply accumulate (MAC) operations.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference17 articles.

1. Toward Automated AMB Controller Tuning: Progress in Identification and Synthesis,2008

2. Modeling and Performance Evaluation of Machining Spindle With Active Magnetic Bearings;J. Mech. Sci. Technol.,2007

3. Rotor Compliance Minimization Via mu-Control of Active Magnetic Bearings;IEEE Trans. Control Syst. Technol.,2002

4. Comparison of PID-, LQR- and Mu-Synthesis Control for Electromagnetic Suspension of a Flexible Rotor,2004

5. Robust Active Chatter Control in the High-Speed Milling Process;IEEE Trans. Control Syst. Technol.,2012

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3