Loading–Unloading Cycles of Three-Dimensional-Printed Built Bimaterial Structures With Ceramic and Elastomer

Author:

Kao Yi-Tang1,Zhang Ying1,Wang Jyhwen2,Tai Bruce L.1

Affiliation:

1. Mechanical Engineering Department, Texas A&M University, 3123 TAMU, College Station, TX 77843 e-mail:

2. Engineering Technology and Industrial Distribution Department, Mechanical Engineering, Texas A&M University, 3367 TAMU, College Station, TX 77843 e-mail:

Abstract

This paper studies the loading–unloading behaviors of a three-dimensional (3D)-printing built bimaterial structure consisting of an open-cellular plaster frame filled with silicone. The combination of the plaster (ceramic phase) and silicone (elastomer phase) is hypothesized to possess a nonlinearly elastic property and a better ductility. Four-point bending tests with programmed cycles of preceding deformations were conducted. The results show that there exists a linear–nonlinear transition when the bending deflection is around 2 mm in the first cycle bending. As the cycle proceeds, this linear–nonlinear transition is found at the maximum deflection of the previous cycle; meanwhile, the bending stiffness degrades. It is believed that the occurrence of microcracks inside the plaster frame is the mechanism behind the phenomenon. The silicone provides a strong network suppressing the abrupt crack propagation in a brittle material. The effects of the frame structure and plaster–silicone ratio were also compared. A high plaster content and large cell size tend to have a higher stiffness and obvious linear to nonlinear transition while it also has more significant stiffness degradation.

Funder

National Science Foundation

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3