High-Temperature Solid Particle Erosion in a Melt-Infiltrated SiC/SiC Ceramic Matrix Composite

Author:

Presby Michael J.1

Affiliation:

1. NASA Glenn Research Center, Cleveland, OH 44135

Abstract

Abstract Ceramic matrix composites are an enabling propulsion material system that offer weight benefits over current Ni-based superalloys, and have higher temperature capabilities that can reduce cooling requirements. Incorporating ceramic matrix composites into the hot section of gas-turbine engines therefore leads to an increase in engine efficiency. While significant advancements have been made, challenges still remain for current and next-generation gas turbines; particularly when operating in dust laden or erosive environments. Solid particles entrained in the gas flow can impact engine hardware resulting in localized damage and material removal due to repeated, cumulative impacts. In this study, the erosion behavior of a melt-infiltrated (MI) silicon carbide fiber-reinforced silicon carbide (SiC/SiC) ceramic matrix composite is investigated at high temperature (1200 °C) in a simulated combustion environment using 150 μm alumina particles as erodent. Particle impact velocities ranged from 100 to 200 m/s and the angle of impingement varied from 30 to 90 deg. Erosion testing was also performed on α-SiC to elucidate similarities and differences in the erosion response of the composite compared to that of a monolithic ceramic. Scanning electron microscopy was used to study the posterosion damage morphology and the governing mechanisms of material removal.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference25 articles.

1. Ceramic-Matrix Composites Enable Revolutionary Gains in Turbine Engine Efficiency;Am. Ceram. Soc. Bull.,2016

2. Erosion in Gas-Turbine Grade Ceramic Matrix Composites;ASME J. Eng. Gas Turbines Power,2019

3. Erosion in a Melt-Infiltrated SiC/SiC Ceramic Matrix Composite;ASME J. Eng. Gas Turbines Power,2020

4. Erosion Behavior in a Gas Turbine Grade Oxide/Oxide Ceramic Matrix Composite,2019

5. CFD-Guided Development of Test Rigs for Studying Erosion and Large-Particle Damage of Thermal Barrier Coatings;Modell. Simul. Eng.,2011

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3