Effect of Hygrothermal Conditioning on the Machining Behavior of Biocomposites

Author:

Chegdani Faissal1,El Mansori Mohamed23

Affiliation:

1. HESAM University Arts et Métiers Institute of Technology, MSMP, , F-51006 Châlons-en-Champagne , France

2. HESAM University Arts et Métiers Institute of Technology, MSMP, , F-51006 Châlons-en-Champagne , France ; , College Station, TX 77843

3. Texas A&M Engineering Experiment Station Arts et Métiers Institute of Technology, MSMP, , F-51006 Châlons-en-Champagne , France ; , College Station, TX 77843

Abstract

Abstract This work aims to study the cutting behavior of biocomposites under different controlled hygrothermal conditions. This investigation choice is motivated by the fact that natural plant fibers such as flax are characterized by their hydrophilicity which makes them able to absorb water from a humid environment. This absorption ability is intensified by increasing the conditioning temperature. The moisture diffusion process affects considerably the mechanical properties of the resulting composite, which causes many issues during the machining operations. In this paper, moisture diffusion, chip form, cutting and thrust forces, and scanning electron microscope (SEM) observations are considered to explore the cutting behavior of flax fiber-reinforced polylactic acid (PLA) depending on the hygrothermal conditioning time. Results reveal that moisture content in the biocomposite is significantly influenced by the conditioning temperature and the fiber orientation. Moisture content and fiber orientation affect both the curling behavior of the removed chip as well as the tool/chip interaction in terms of friction. The machinability of flax fiber-reinforced PLA biocomposites depending on hygrothermal conditioning time is then investigated using SEM analysis in addition to analytical modeling. An analysis of variance is used finally to quantify the observed results.

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3