Affiliation:
1. Massachusetts Institute of Technology
2. BU
Abstract
This paper describes the design and prototyping of a low-cost portable mechanical ventilator for use in mass casualty cases and resource-poor environments. The ventilator delivers breaths by compressing a conventional bag-valve mask (BVM) with a pivoting cam arm, eliminating the need for a human operator for the BVM. An initial prototype was built out of acrylic, measuring 11.25×6.7×8 in.3 and weighing 9 lbs. It is driven by an electric motor powered by a 14.8 VDC battery and features an adjustable tidal volume up to a maximum of 750 ml. Tidal volume and number of breaths per minute are set via user-friendly input knobs. The prototype also features an assist-control mode and an alarm to indicate overpressurization of the system. Future iterations of the device will include a controllable inspiration to expiration time ratio, a pressure relief valve, PEEP capabilities, and an LCD screen. With a prototyping cost of only $420, the bulk-manufacturing price for the ventilator is estimated to be less than $200. Through this prototype, the strategy of cam-actuated BVM compression is proven to be a viable option to achieve low-cost, low-power portable ventilator technology that provides essential ventilator features at a fraction of the cost of existing technology.
Subject
Biomedical Engineering,Medicine (miscellaneous)
Cited by
69 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献