Natural Convection With Surface Radiation From the Infrared Suppression Device and Estimation of Cooling Time: A Computational Analysis

Author:

Chandrakar Vikrant1,Senapati Jnana Ranjan1,Mohanty Aurovinda2

Affiliation:

1. National Institute of Technology Department of Mechanical Engineering, , Rourkela 769008 , India

2. Veer Surendra Sai University of Technology Department of Mechanical Engineering, , Burla 768018 , India

Abstract

Abstract The thermofluid characteristics of the infrared suppression (IRS) device used in the marine gas turbine as an exhaust system are numerically investigated here. The prime objective is to observe the impact of convection united with surface radiation on the cooling of the IRS. Furthermore, the time taken to cool down the device is also estimated. A comparison exercise is also carried out to elucidate the impact of radiation considering the surface radiation and without it (taking only convection). The numerical solution of the Navier–Stokes equation, energy equation, and radiation equation, along with the turbulence equations, are performed using ANSYS FLUENT 15.0. Various relevant parameters are taken for the analysis, namely, Rayleigh number (Ra) (1 × 1010 ≤ Ra ≤ 1 × 1012), diameter ratio (DR) (1.01 ≤ DR ≤ 1.3), funnel overlapping (OL) (−20% ≤ OL ≤ 20%), and emissivity of the surface (ε) (0 ≤ ε ≤ 1). It is noticed that surface radiation has an enormous contribution to the total heat transfer and, thus, could not be neglected. The total heat transfer rate and mass flowrate increase with Ra and DR. Also, the contribution of convective heat transfer drops with the rise in emissivity. In addition, the convection united with surface radiation case reduces the cooling time (almost half) than the natural convection alone case.

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Experimental correlation of natural convection in low Rayleigh atmospheres for vertical plates and comparison between CFD and lumped parameter analysis;International Journal of Heat and Mass Transfer;2024-05

2. Numerical investigation of the influence of inner funnel offset and height reduction on a modified IRS device;Proceeding of Proceedings of the 27th National and 5th International ISHMT-ASTFE Heat and Mass Transfer Conference December 14-17, 2023, IIT Patna, Patna-801106, Bihar, India;2024

3. Numerical investigation of mixed convection through an infrared-suppression (IRS) device;International Communications in Heat and Mass Transfer;2023-07

4. Free convection cooling of a real-scale IRS device with a louvered cylindrical funnel: A three dimensional numerical study;International Communications in Heat and Mass Transfer;2022-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3