Affiliation:
1. LOTHAR, Department of Energy and Systems Engineering, University of Pisa, Largo L. Lazzarino 1, 56122 Pisa, Italy
Abstract
Recent experimentation of boiling in different environments, namely in reduced or enhanced gravity and/or in the presence of electric fields, have shed new light on the comprehension of boiling phenomena and have focused the objectives of future investigation. The recent results achieved by the author and other research groups around the world are reported and discussed in the paper. After a short introduction on some fundamental phenomena and their dependence on force fields, pool, and flow boiling are dealt with. In particular, it is stressed that due to increased coalescence peculiar flow regimes take place in reduced gravity, influencing the heat transfer performance. The application of an electric field may, in some instances, delay or avoid these regime transitions. In boiling at high flowrate, the phenomena are dominated by inertia and thus gravity-independent; however, the threshold at which this occurs has still to be determined.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献