Use of CFD Modeling for Design of NOx Reduction Systems in Utility Boilers

Author:

Adams Bradley1,Cremer Marc1,Valentine James1,Bhamidipati Venkata2,O’Connor David3,Letcavits J. J.4,Vierstra Scott5

Affiliation:

1. Reaction Engineering International, Salt Lake City, UT

2. Conectiv, Beesley Point, NJ

3. EPRI

4. AEP Pro Serv, Inc., Columbus, OH

5. SAVvy Engineering, LLC, Canal Winchester, OH

Abstract

CFD modeling has found increasing use in the design and evaluation of utility boiler retrofits, combustion optimization and NOx reduction technologies. This paper reviews two recent examples of CFD modeling used in the design and evaluation of NOx reduction technologies. The first example involves the staging of furnace combustion through use of overfire air (OFA) to reduce NOx emission in a B&W opposed-wall fired pc furnace. Furnace simulations identified locations of highest flue gas mass flows and highest CO concentrations and were used to identify OFA port placement for maximum NOx reduction with lowest increases in unburned carbon in fly ash and CO emission. Simulations predicted a 34% reduction in NOx emission with OFA. The second example summarizes the design and application of RRI with OFA and SNCR in a 138 MW cyclone-fired boiler. Simulations were used to design an aminebased injection system for the staged lower furnace and to evaluate NOx reduction and ammonia slip of the RRI system. Field-testing confirmed modeling predictions and demonstrated that the RRI system alone could achieve 25–30% NOx reduction beyond OFA levels with less than 1 ppm ammonia slip and that RRI in combination with SNCR could achieve 50–55% NOx reduction with less than 5 ppm slip.

Publisher

ASMEDC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3