Predicting Transition in Turbomachinery: Part I — A Review and New Model Development

Author:

Praisner T. J.1,Clark J. P.2

Affiliation:

1. United Technologies Pratt & Whitney, East Hartford, CT

2. U.S. Air Force Research Laboratory, Wright-Patterson AFB, OH

Abstract

Here we report on an effort to include an empirically based transition modeling capability in a RANS solver. Testing of well-known empirical models from literature for both attached- and separated-flow transition against cascade data revealed that the models did not provide enough fidelity for implementation in an airfoil design system. Consequently, a program was launched to develop models that would provide sufficient accuracy for use in an airfoil design system. As a first step in the effort, accurate modeling of freestream turbulence development was identified as a need for any form of transition modeling capability. Additionally, capturing the effects of freestream turbulence on pre-transitional boundary layers was found to have a significant effect on the accuracy of transition modeling. A CFD-supplemented database of experimental cascade cases (57 with attached-flow transition and 47 with separation and turbulent reattachment) was constructed to explore the development of new correlations. Dimensional analyses were performed to guide the work and appropriate non-dimensional parameters were then extracted from CFD predictions of the laminar boundary layers existing on the airfoil surfaces prior to either transition onset or incipient separation. For attached-flow transition, exploration of the database revealed a distinct correlation between local levels of freestream turbulence intensity, turbulence length scale, and momentum-thickness Reynolds number at transition onset. It was found that the correlation could be recast as a ratio of the boundary-layer diffusion time to a time-scale associated with the energy-bearing turbulent eddies. In the case of separated-flow transition, it was found that the length of a separation bubble prior to turbulent re-attachment was a simple function of the local momentum thickness at separation and the overall surface length traversed by a fluid element prior to separation. Both the attached- and separated-flow transition models were implemented into the design system as point-like trips.

Publisher

ASMEDC

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3