Supercritical CO2 Cycle for Fast Gas-Cooled Reactors

Author:

Dostal Vaclav1,Driscoll Michael J.1,Hejzlar Pavel1,Wang Yong1

Affiliation:

1. Massachusetts Institute of Technology, Cambridge, MA

Abstract

Brayton cycles are currently being extensively investigated for possible use with nuclear reactors in order to reduce capital cost, shorten construction period and increase nuclear power plant efficiency. The main candidates are the well-known helium Brayton cycle and the less familiar supercritical CO2 cycle, which has been given increased attention in the past several years. The main advantage of the supercritical CO2 cycle is comparable efficiency with the helium Brayton cycle at significantly lower temperature (550°C/823K), but higher pressure (20MPa/200 normal atmospheres). By taking advantage of the abrupt property changes near the critical point of CO2 the compression work can be reduced, which results in a significant efficiency improvement. Among the surveyed compound cycles the recompression cycle offers the highest efficiency, while still retaining simplicity. The turbomachinery is highly compact and achieves efficiencies of more than 90%. Preliminary assessment of the control scheme has been performed as well. It was found that conventional inventory control could not be applied to the supercritical CO2 recompression cycle. The conventional bypass control is applicable. The reference cycle achieves 46% thermal efficiency at the compressor outlet pressure of 20MPa and turbine inlet temperature of 550°C. The sizing of the heat exchangers and turbomachinery has been performed. The recuperator specific volume is 0.39m3/MWe and pre-cooler specific volume 0.08m3/MWe. For the reference 600MWth reactor this translates to ∼ 99m3 heat exchanger core for the recuperator and ∼ 21m3 for the pre-cooler. Overall the cycle offers an attractive alternative to the steam cycle. The supercritical CO2 cycle is well suited to any type of nuclear reactor with core outlet temperature above ∼ 500°C.

Publisher

ASMEDC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3