Large Eddy Simulation of Flow and Heat Transfer in a Staggered 45° Ribbed Duct

Author:

Abdel-Wahab Samer1,Tafti Danesh K.1

Affiliation:

1. Virginia Polytechnic Institute and State University, Blacksburg, VA

Abstract

Results from large eddy simulation (LES) of fully developed flow in a staggered 45° ribbed duct are presented with rib pitch-to-height ratio P/e = 10 and a rib height to hydraulic diameter ratio e/Dh = 0.1. The nominal Reynolds number based on bulk velocity is 47,300. Mean flow and turbulent quantities, together with heat transfer and friction augmentation results are presented. The flow is characterized by a helical vortex behind each rib and a complementary cross-sectional secondary flow, both of which result from the angle of the rib with respect to the mean flow. Averaged velocity profiles at the duct center show excellent agreement with experiments and heat transfer predictions agree well with experiments. Turbulent kinetic energy, shear stress, and heat transfer augmentation ratios show a strong correlation to the rib vortex and the secondary flow. Overall, heat transfer is augmented by a factor of 2.3 compared with a smooth duct and matches experimental data within 2%.

Publisher

ASMEDC

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3