Role of Tip-Leakage Vortices and Passage Shock in Stall Inception in a Swept Transonic Compressor Rotor

Author:

Hah Chunill1,Rabe Douglas C.2,Wadia Aspi R.3

Affiliation:

1. NASA Glenn Research Center, Cleveland, OH

2. U.S. Air Force Research Laboratory, Wright-Patterson AFB, OH

3. GE Aircraft Engines, Cincinnati, OH

Abstract

The current paper reports on investigations aimed at advancing the understanding of the flow field near the casing of a forward-swept transonic compressor rotor. The role of tip clearance flow and its interaction with the passage shock on stall inception are analyzed in detail. Steady and unsteady three-dimensional viscous flow calculations are applied to obtain flow fields at various operating conditions. The numerical results are first compared with available measured data. Then, the numerically obtained flow fields are interrogated to identify the roles of flow interactions between the tip clearance flow, the passage shock, and the blade/endwall boundary layers. In addition to the flow field with nominal tip clearance, two more flow fields are analyzed in order to identify the mechanisms of blockage generation: one with zero tip clearance, and one with nominal tip clearance on the forward portion of the blade and zero clearance on the aft portion. The current study shows that the tip clearance vortex does not break down, even when the rotor operates in a stalled condition. Interaction between the shock and the suction surface boundary layer causes the shock, and therefore the tip clearance vortex, to oscillate. However, for the currently investigated transonic compressor rotor, so-called breakdown of the tip clearance vortex does not occur during stall inception. The tip clearance vortex originates near the leading edge tip, but moves downward in the spanwise direction inside the blade passage. A low momentum region develops above the tip clearance vortex from flow originating from the casing boundary layer. The low momentum area builds up immediately downstream of the passage shock and above the core vortex. This area migrates toward the pressure side of the blade passage as the flow rate is decreased. The low momentum area prevents incoming flow from passing through the pressure side of the passage and initiates stall inception. It is well known that inviscid effects dominate tip clearance flow. However, complex viscous flow structures develop inside the casing boundary layer at operating conditions near stall.

Publisher

ASMEDC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3