Affiliation:
1. Chosun University, Kwangju, Republic of Korea
Abstract
In order to estimate the precise performance of the existing gas turbine engine, the component maps with more realistic performance characteristics are needed. Because the components maps are engine manufacturer’s propriety obtained from very expensive experimental tests, they are not provided to the customers, generally. Therefore, because the engineers, who are working the performance simulation, have been mostly relying on component maps scaled from the similar existing maps, the accuracy of the performance analysis using the scaled maps may be relatively lower than that using the real component maps. Therefore, a component map generation method using experimental data and the genetic algorithms are newly proposed in this study. The engine test unit to be used for map generation has a free power turbine type small turboshaft engine. In order to generate the performance map for components of this engine, after obtaining engine performance data through many experimental tests, and then the third order equations, which have relationships the mass flow function, the pressure ratio and the isentropic efficiency as to the engine rotational speed were derived by using the genetic algorithm. A steady-state performance analysis was performed with the generated maps of the compressor by the commercial gas turbine performance analysis program GASTURB (Kruzke, 2001). In order to verify predominance of the proposed scheme, the performance analysis results using the maps obtained by this study were compared with those using the compressor map provided by the engine manufacturer and the scaled turbine maps obtained from the GASTURB, as well as experimental results. In comparison, it was found that the component maps can be generated from the experimental test data by using the genetic algorithms, and it was confirmed that the analysis results using the generated maps were very similar to those using the scaled maps from the GASTURB.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献