Component Map Generation of a Gas Turbine Using Genetic Algorithms

Author:

Kong Changduk1,Kho Seonghee1,Ki Jayoung1

Affiliation:

1. Chosun University, Kwangju, Republic of Korea

Abstract

In order to estimate the precise performance of the existing gas turbine engine, the component maps with more realistic performance characteristics are needed. Because the components maps are engine manufacturer’s propriety obtained from very expensive experimental tests, they are not provided to the customers, generally. Therefore, because the engineers, who are working the performance simulation, have been mostly relying on component maps scaled from the similar existing maps, the accuracy of the performance analysis using the scaled maps may be relatively lower than that using the real component maps. Therefore, a component map generation method using experimental data and the genetic algorithms are newly proposed in this study. The engine test unit to be used for map generation has a free power turbine type small turboshaft engine. In order to generate the performance map for components of this engine, after obtaining engine performance data through many experimental tests, and then the third order equations, which have relationships the mass flow function, the pressure ratio and the isentropic efficiency as to the engine rotational speed were derived by using the genetic algorithm. A steady-state performance analysis was performed with the generated maps of the compressor by the commercial gas turbine performance analysis program GASTURB (Kruzke, 2001). In order to verify predominance of the proposed scheme, the performance analysis results using the maps obtained by this study were compared with those using the compressor map provided by the engine manufacturer and the scaled turbine maps obtained from the GASTURB, as well as experimental results. In comparison, it was found that the component maps can be generated from the experimental test data by using the genetic algorithms, and it was confirmed that the analysis results using the generated maps were very similar to those using the scaled maps from the GASTURB.

Publisher

ASMEDC

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3