Combustion Tuning Guidelines: Understanding and Mitigating Dynamic Instabilities in Modern Gas Turbine Combustors

Author:

Angello Leonard C.1,Castaldini Carlo2

Affiliation:

1. Electrical Power Research Institute, Palo Alto, CA

2. CMC-Engineering, Sunnyvale, CA

Abstract

DLN combustors used in modern utility Combustion Turbines (CTs) must operate within tight tolerances of equivalence ratio, fuel/air mixing and turbulence in order to deliver single digit NOx emission performance, while maintaining combustion stability and design power output. As lean NOx emissions from large CTs are driven to increasingly lower levels, even small changes in combustion conditions or manufacturing tolerances can lead to the onset of combustion instabilities and acoustic combustion noise. If left unattended, dynamic oscillations in ultra-low NOx premix combustors can produce resonant acoustics that can in turn cause adverse impacts on performance, including the ability to deliver capacity, or the premature failure of critical system components and emergency shut-downs. For example, it is widely accepted that extreme changes in ambient temperature, or minor changes in fuel composition and temperature, or the use of power augmentation techniques under certain conditions, can lead to combustion instabilities. EPRI is leading a multi-task program to map the operating regime for stable combustion in modern DLN combustors; identify key operating conditions that most influence the onset of combustion instabilities; and develop DLN tuning guidelines based on users’ experience and vendors’ monitoring and control systems. The overall objective of these projects is to maximize the operational flexibility of modern CTs based on implementation of active monitoring and control guidelines aimed at anticipating, preventing, and effectively responding to the onset of combustion-induced dynamic instabilities and CT noise. This paper briefly discusses the dynamics of combustion instabilities in premix DLN combustors; presents the preliminary results from detailed parametric analysis of a large database; and our findings on DLN tuning approaches such as modulating fuel flows and changing inlet guide vanes, that can be used effectively to control combustion instabilities.

Publisher

ASMEDC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3