Experimental and Numerical Investigation on the Performance of a Family of Three HP Transonic Turbine Blades

Author:

Corriveau D.1,Sjolander S. A.2

Affiliation:

1. Defence R&D Canada, Quebec City, Quebec, Canada

2. Carleton University, Ottawa, Ontario, Canada

Abstract

Experimental results concerning the performance of three high-pressure (HP) transonic turbine blades having fore-, aft- and mid-loadings have been presented previously by Corriveau and Sjolander [1]. Results from that study indicated that by shifting the loading towards the rear of the airfoil, improvements in loss performance of the order of 20% could be obtained near the design Mach number. In order to gain a better understanding of the underlying reasons for the improved loss performance of the aft-loaded blade, additional measurements were performed on the three cascades. Furthermore, 2-D numerical simulations of the cascade flow were performed in order to help in the interpretation of the experimental results. Based on the analysis of additional wake traverse data and base pressure measurements combined with the numerical results, it was found that the poorer loss performance of the baseline mid-loaded profile compared to the aft-loaded blade could be traced back to the former’s higher rear suction side curvature. The presence of higher rear suction surface curvature resulted in higher flow velocity in that region. Higher flow velocity at the trailing edge in turn contributed to reducing the base pressure. The lower base pressure at the trailing edge resulted in a stronger trailing edge shock system for the mid-loaded blade. This shock system increased the losses for the mid-loaded baseline profile when compared to the aft-loaded profile.

Publisher

ASMEDC

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3