Development of an Ultra-Low NOx LP(P) Burner

Author:

v. d. Bank Ralf1,Schilling Thomas1

Affiliation:

1. Rolls-Royce Deutschland, Ltd. & Co KG, Berlin, Germany

Abstract

Within the EC framework 5 programme LOPOCOTEP Rolls-Royce Deutschland (RRD) continues to develop Lean Premix (Partially Pre-vaporized) (LP(P)) combustion systems to implement the ACARE goals to achieve further NOx reductions compared with the best combustor technology currently available. The results from the previous EC framework 4 programme LowNOx III had been used to calculate DpNOx/Foo values for an ICAO LTO cycle. The result showed that 40% from the CAEP II limit can be achieved for a medium size fan engine. Cycle and mission calculations have risen the hope that total NOx emissions can be reduced by more than 70% for a 800 NM medium range flight. The objective of the current programme is to further reduce the NOx emissions (30% CAEP II) for a more severe engine cycle and therefore a larger burner size compared to the LowNOx III programme. Flash-back and auto-ignition under all operation conditions have to be prevented. A scaling law was derived from the existing database and applied on an LP(P) module which was then tested at pressures of up to 35 bar and temperatures of up to 900 K in a single sector test rig. The applicability of the scaling laws was confirmed. Testing at take-off conditions showed single digit EINOx between 2 and 4 g/kg depending on the actual swirl-generator configuration. However, poor weak extinction was observed and gave concern regarding operability. The decision was taken to redirect the development efforts to improve operability and to increase the lean blow out (LBO) air-fuel-ratio (AFR). This led to the integration of an internal, centrally arranged pressure-swirl atomizer as pilot diffusion burner into the LP(P) burners. Due to an optimization of the aerodynamics of the LP(P) module which was performed at the same time the dimensions of the burner could be reduced while the effective area was kept constant. This burner was then initially tested at atmospheric conditions to address ignition and LBO limit. This burner showed excellent ground ignition capability at air temperatures as low as 350 K. In the best configuration one spark was sufficient. The testing of the lean extinction limit was repeatedly verified. At 350 K the LBO was always in the range between 110–130 OAFR. More detailed investigations on emissions, flash-back and auto-ignition characteristics will be performed at ONERA and Lund University.

Publisher

ASMEDC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optical Investigations of the Combustion Characteristics of a Gas Turbine Pilot Burner;45th AIAA Aerospace Sciences Meeting and Exhibit;2007-01-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3