Large Eddy Simulation of Flow and Heat Transfer in a 90° Ribbed Duct With Rotation: Effect of Coriolis Forces

Author:

Abdel-Wahab Samer1,Tafti Danesh K.1

Affiliation:

1. Virginia Polytechnic Institute and State University, Blacksburg, VA

Abstract

This paper presents results from large eddy simulation (LES) of fully developed flow in a 90° ribbed duct with rib pitch-to-height ratio P/e = 10 and a rib height to hydraulic diameter ratio e/Dh = 0.1. Three rotation numbers Ro = 0.18, 0.35 and 0.67 are studied at a nominal Reynolds number based on bulk velocity of 20,000. Mean flow and turbulent quantities, together with heat transfer and friction augmentation data are presented. Turbulence and heat transfer are augmented on the trailing surface and reduced at the leading surface. The heat transfer augmentation ratio on the trailing surface asymptotes to a value of 3.7 ± 5% and does not show any further increasing trend as the rotation number increases beyond 0.2. On the other hand, augmentation ratios on the leading surface keep decreasing with an increase in rotation number with values ranging from 1.7 at Ro = 0.18 to 1.2 at Ro = 0.67. Secondary flow cells augment the heat transfer coefficient on the smooth walls by 20% to 30% over a stationary duct. An increase in rotation number from 0.35 to 0.67 decreases the frictional losses from an augmentation ratio of 9.6 to 8.75 and is a consequence of decrease in form drag and wall shear. Overall augmentation compared with a non-rotating duct ranges from +15% to +20% for heat transfer, and +10% to +15% for friction over the range of rotation numbers studied. Comparison of heat transfer augmentation with previous experimental results in the literature shows very good agreement.

Publisher

ASMEDC

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3