Squeeze-Film Damper Predictions for Simulation of Aircraft Engine Rotordynamics

Author:

Defaye Cyril1,Laurant Franck1,Carpentier Philippe2,Arghir Mihai3,Bonneau Olivier3,Colboc Samuel4

Affiliation:

1. Snecma Moteurs, Moissy Cramayel, France

2. Polytech’Lille, Villeneuve d’Ascq, France

3. Universite´ de Poitiers, Futuroscope, France

4. Techspace Aero, Herstal (Milmort), Belgium

Abstract

On aircraft engines, a common recurring problem is excessive vibration levels generated by unbalance. With rotors mounted on usual undamped ball bearings, an amount of damping is required to limit peak amplitudes at traversed critical speeds: a solution is to introduce external damping with squeeze-film dampers. Such dampers can be added with minor modifications of the rotor system design. This paper presents experimental and theoretical work in progress focused on the analysis of squeeze film dampers (SFD) based on serial aircraft engines design. Several squeeze-film geometries were tested to measure the influence of different design parameters as the fluid clearance and the groove feeding system. Next, a damper model based on the numerical solution of the Reynolds equation is correlated with the experimental data to obtain predictive global forces. It is shown that the theoretical model is a good predictive tool if it is correctly adjusted and if temporal inertia forces are negligible. The present damper model is further compared with analytical models taken from the literature which are obviously more appropriate to be used in whole engine rotordynamic analysis. The limits of the models are then underlined by comparisons with experimental results.

Publisher

ASMEDC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3