Evaporative Heat Transfer Analysis of a Heat Pipe With Hybrid Axial Groove

Author:

Bai Lizhan1,Lin Guiping2,Peterson G. P.3

Affiliation:

1. e-mail:

2. School of Aeronautical Science and Engineering, Beihang University, Beijing, 100191, P.R. China

3. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30318

Abstract

Through the application of thin film evaporation theory and the fundamental operating principles of heat pipes, a hybrid axial groove has been developed that can greatly enhance the performance characteristics of conventional heat pipes. This hybrid axial groove is composed of a V-shaped channel connected with a circular channel through a very narrow longitudinal slot. During the operation, the V-shaped channel can provide high capillary pressure to drive the fluid flow and still maintain a large evaporative heat transfer coefficient. The large circular channel serves as the main path for the condensate return from the condenser to the evaporator and results in a very low flow resistance. The combination of a high evaporative heat transfer coefficient and a low flow resistance results in considerable enhancement in the heat transport capability of conventional heat pipes. In the present work, a detailed mathematical model for the evaporative heat transfer of a single groove has been established based on the conservation principles for mass, momentum and energy, and the modeling results quantitatively verify that this particular configuration has an enhanced evaporative heat transfer performance compared with that of conventional rectangular groove, due to the considerable reduction in the liquid film thickness and a corresponding increase in the evaporative heat transfer area in both the evaporating liquid film region and the meniscus region.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference35 articles.

1. Thermal Characteristics of Conventional and Flat Miniature Axially Grooved Heat Pipes;ASME J. Heat Transfer,1995

2. Heat Pipe Research and Development in the Americas;Heat Recovery Syst. CHP,1989

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3