Rigid-Elastic Combined Metamaterial Beam With Tunable Band Gaps for Broadband Vibration Suppression

Author:

Zhang Jiazhen11,Peng Xuzhang2,Yu Dewen3,Hu Guobiao2,Yang Yaowen1

Affiliation:

1. Nanyang Technological University School of Civil and Environmental Engineering, , Nanyang Avenue, Singapore 639798

2. The Hong Kong University of Science and Technology (Guangzhou) Internet of Things Thrust, , Guangzhou 511400 , China

3. Xi’an Jiaotong University Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, School of Mechanical Engineering, , Xi’an 710049 , China

Abstract

Abstract Extensive research efforts have been dedicated to exploring the application of metamaterial beams for vibration suppression. However, most existing designs primarily focused on utilizing the translational motion of local resonators to create band gaps. To address this limitation of employing solo motion to induce a relatively narrow band gap, this study proposes a novel design: a rigid-elastic combined metamaterial beam utilizing both translational and rotational motions of local resonators. Theoretical framework development involves extending the transfer matrix method to incorporate rigid bodies, with analytical results validated through finite element simulations and experimental data. Compared to conventional metamaterial beams, the proposed design exhibits an additional wide band gap in the low-frequency region that can be utilized for broadband vibration suppression. A parametric study elucidates the influences of geometric parameters on band gap formation, followed by an exploration of the tunability of the proposed meta-beam through a graded scheme and optimization strategy. In particular, a multiple-objective optimization approach is employed to enlarge the vibration suppression region and enhance vibration suppression ability. The optimized meta-beam demonstrates a remarkable 45% wider dominant suppression region and a 14% lower average transmittance compared to a uniform model.

Funder

Dalian University of Technology

National Natural Science Foundation of China

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3