Structural Optimization of the Main Bearing in a Tunnel Boring Machine Considering Clearance

Author:

Wang Xinqi1,Sun Wei1,Wang Lintao1,Liang Shihu1,Mu Xiaokai1

Affiliation:

1. Dalian University of Technology School of Mechanical Engineering, , No. 2, Linggong Road, Ganjingzi District, Dalian 116024, Liaoning , China

Abstract

Abstract An optimal design method for the main bearing of a tunnel boring machine is proposed. In this method, the fatigue life is used as the objective function. Structural parameters, including clearance, are considered as design variables. First, a quasi-static model of the main bearing and a calculation model of the fatigue life are established. The correctness of the theoretical method is verified by comparing it with the calculation results of the finite element method. Next, the influence of clearance on the load-carrying performance under external loads is analyzed. There is an optimal negative clearance for the axial loaded and radial rows. With the increase in the external loads, the optimal negative clearance gradually decreases. The variation laws of the load-carrying performance for the axial loaded and supporting rows affected by axial clearance mainly depend on the bias load degree of the main bearing. Finally, based on the optimal design model of the main bearing, the optimal internal structure is obtained using the genetic algorithm. The optimized fatigue life is improved by 92.2%. The load-carrying performance of the optimal main bearing has also been significantly enhanced compared to the initial design. Therefore, the proposed optimization method provides a practical approach to the main bearing design.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3