An Experimental Study of Subcooled Film Boiling on a Vertical Surface—Thermal Aspects

Author:

Vijaykumar R.1,Dhir V. K.1

Affiliation:

1. Mechanical, Aerospace, and Nuclear, Engineering Department, School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, CA 90024

Abstract

Wall and liquid side heat fluxes near the leading edge of a vertical wall 6.3 cm wide and 10.3 cm high were measured during subcooled film boiling of water at 1 atm pressure. The heat flux from the interface into the liquid and temperature profiles in the liquid thermal layer were measured using real time holographic interferometry. The wall heat flux was measured with thermocouples embedded in a copper block, one face of which served as the heated wall. The role of the leading edge vapor layer, ripples, and large bulges in modifying the liquid side heat transfer is quantified.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Inclined film boiling: Film stability and heat transfer;International Journal of Multiphase Flow;2019-02

2. Transition and Film Boiling;Handbook of Thermal Science and Engineering;2018

3. Heat transfer correlation for film boiling in vertical upward flow;International Journal of Heat and Mass Transfer;2017-04

4. Transition and Film Boiling;Handbook of Thermal Science and Engineering;2017

5. Film boiling heat transfer and vapour film collapse on spheres, cylinders and plane surfaces;Nuclear Engineering and Design;2009-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3