Affiliation:
1. Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
Abstract
This paper used large deformation finite element theory, updated Lagrangian formulation, finite difference method, and incremental theory to develop a three-dimensional thermo-elastic-plastic simulation model for a tool with chip breaker. Both the critical strain energy density theory and the tool feed geometrical location were introduced as the chip separation criterion for cutting. The algorithm of tool movement geometrical limitations was used to examine and correctly the node so as to conform to real cutting conditions. In this model, the tool moved step by step in the simulation, which ran from the initial contact between tool and workpiece to the formation of steady cutting force. Finally, the numerical simulation model proposed in this paper was used to analyze the changes in workpiece and chip shapes, stress, strain rate, residual stress, temperature and cutting force of mild steel workpiece under different chip breaker lengths. The results were also compared with those from tools without chip breaker. The findings indicate that the chip breaker length affects the shorter the chip breaker length, the better the effects of chip breaker, and the lower the values of the aforementioned physical properties.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献