Eulerian Framework for Inelasticity Based on the Jaumann Rate and a Hyperelastic Constitutive Relation—Part II: Finite Strain Elastoplasticity

Author:

Eshraghi Amin1,Jahed Hamid2,Papoulia Katerina D.3

Affiliation:

1. Research Associate e-mail:

2. Professor e-mail:  Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada

3. Associate Professor Department of Applied Mathematics, University of Waterloo, Waterloo, ON, N2L 3G1, Canada e-mail:

Abstract

An Eulerian rate formulation of finite strain elastoplasticity is developed based on a fully integrable rate form of hyperelasticity proposed in Part I of this work. A flow rule is proposed in the Eulerian framework, based on the principle of maximum plastic dissipation in six-dimensional stress space for the case of J2 isotropic plasticity. The proposed flow rule bypasses the need for additional evolution laws and/or simplifying assumptions for the skew-symmetric part of the plastic velocity gradient, known as the material plastic spin. Kinematic hardening is modeled with an evolution equation for the backstress tensor considering Prager’s yielding-stationarity criterion. Nonlinear evolution equations for the backstress and flow stress are proposed for an extension of the model to mixed nonlinear hardening. Furthermore, exact deviatoric/volumetric decoupled forms for kinematic and kinetic variables are obtained. The proposed model is implemented with the Zaremba–Jaumann rate and is used to solve the problem of rectilinear shear for a perfectly plastic and for a linear kinematic hardening material. Neither solution produces oscillatory stress or backstress components. The model is then used to predict the nonlinear hardening behavior of SUS 304 stainless steel under fixed-end finite torsion. Results obtained are in good agreement with reported experimental data. The Swift effect under finite torsion is well predicted by the proposed model.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3