Locally Exact Homogenization of Unidirectional Composites With Cylindrically Orthotropic Fibers

Author:

Wang Guannan1,Pindera Marek-Jerzy1

Affiliation:

1. Civil Engineering Department, University of Virginia, Charlottesville, VA 22904-4742

Abstract

The elasticity-based, locally exact homogenization theory for unidirectional composites with hexagonal and tetragonal symmetries and transversely isotropic phases is further extended to accommodate cylindrically orthotropic reinforcement. The theory employs Fourier series representations of the fiber and matrix displacement fields in cylindrical coordinate system that satisfy exactly equilibrium equations and continuity conditions in the interior of the unit cell. Satisfaction of periodicity conditions for the inseparable exterior problem is efficiently accomplished using previously introduced balanced variational principle which ensures rapid displacement solution convergence with relatively few harmonic terms. As demonstrated in this contribution, this also applies to cylindrically orthotropic reinforcement for which the eigenvalues depend on both the orthotropic elastic moduli and harmonic number. The solution's demonstrated stability facilitates rapid identification of cylindrical orthotropy's impact on homogenized moduli and local fields in wide ranges of fiber volume fraction and orthotropy ratios. The developed theory provides a unified approach that accounts for cylindrical orthotropy explicitly in both the homogenization process and local stress field calculations previously treated separately through a fiber replacement scheme. Comparison of the locally exact solution with classical solutions based on an idealized microstructural representation and fiber moduli replacement with equivalent transversely isotropic properties delineates their applicability and limitations.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3